首页>>百科常识

“莫斯”是什么意思?武汉话吗?

今天宠物迷的小编给各位宠物饲养爱好者分享什么是莫丝的宠物知识,其中也会对“莫斯”是什么意思?武汉话吗?(方言莫斯是什么意思)进行专业的解释,如果能碰巧解决你现在面临的宠物相关问题,别忘了关注本站哦,现在我们开始吧!

“莫斯”是什么意思?武汉话吗?

是“什么”的意思。湖北很多地区的方言都有这句话。

“莫斯”是什么意思?武汉话吗?

地方方言:恩侬喜欢期莫斯。是哪里话,翻译普通话什么意思答对奖励50分

思侬喜欢期末死。

莫斯的养殖 鱼缸里的水草莫斯

 养莫斯的的人很多,一开始总是不得要领,以下分享一些个人的经验,就不按莫丝分类说了,养法基本相同。如果把莫丝绑好,也是很令人赏心悦目的。
1、莫丝沉木绑法
  紧贴沉木绑一层,铺开,莫丝的量正好够你覆盖你希望莫丝在沉木发展的区域就好,用鱼线十字交叉绑,先按沉木形状纵向缠绕再横向绑,形成十字纹。


2、莫丝初入缸
  莫丝喜欢新水,入缸后第三天换缸1/5或1/4的水,加液肥(买好液肥,要不容易长藻),一周后,按初次换水的量再换次水,加液肥。

3、一周零三天后的处理

  这时你的莫丝可能会有小部分烂掉,而且莫丝本身也带有藻类,将来会令缸里滋生藻类,也会影响莫丝的生长,所以买一块钱的草虾,把虾里的大眼贼虾挑出来(会伤害你的鱼),虾会清理莫丝上的烂叶和藻,就像给莫丝梳头,效果非常好。
4、换水

  保持好水质,对以后对于莫丝的处理就省事得多,越大的缸换水周期就可以越长一些,我1.5m的缸15天换部分水,换的水除调节温度外,再加一些黑水和水质稳定剂(养灯鱼的加此剂效果很好)。换水后加适量的液肥和硝化菌。

5、给莫丝“剃头”

  当莫丝长得开始壮观时,其实并不是最佳状态,这时就要给莫丝“剃头”,就是贴着沉木的形剪掉长出的莫丝,以后再长出来的就会错落有致,非常漂亮。剪下的莫丝可以送人或贴到背景板上。
用鱼线吧莫斯绑在沉木、石头、铝网上,放入缸底即可。
最好能定期稍稍给点水草液肥。

“千金难买少年穷”的意义

从小生活在艰苦的环境里,能锻炼一个人的意志。 古语说的好“千金难买少年穷”啊!困苦的环境对于年轻人来说,或许正是一笔不可多得的财富!俗话说“自古英雄多磨难,纨绔子弟少伟男”!当代社会还依然行得通。 少年儿童如果过着太舒适的环境,对于大多数人,只会悄悄的消磨掉意志和理想,富了物质,可穷掉的却是精神! 扩展资料: 香港菁英会荣誉**、香港互联网专业协会会长洪为民日前做客人民网香港直播间,畅谈自己在香港生活、奋斗的酸甜苦辣。洪为民于1979年从内地来到香港生活,那时候的香港,老百姓的日子都很贫穷,但洪为民肯吃苦,爱学习,透过自己的努力。 不仅客服了语言不通的障碍,在香港还闯出了一片天地。回忆自己小时候的艰难岁月,洪为民说这样形容:“千金难买少年穷”,小时候经历过困苦,对社会有更清楚的了解,这对成长中的人来说是一件好事。 参考资料来源:人民网-对话香港专业人士洪为民 畅谈“千金难买少年穷”

‘戴尔莫斯’是什么意思

您好
是否您变更了无线接入口令,或者无线网络开关按钮不小心碰触关闭无线功能了,再就是无线网卡驱动文件损坏,建议你重新安装下无线网卡的驱动,Dell电脑的驱动建议最好到戴尔官网进行驱动下载,地址如下,请根据自己的电脑型号及系统进行下载安装
http://****dell***m/support/drivers/cn/zh/cnbsd1/DriversHome/?c=cn&s=bsd&cs=cnbsd1&l=zh

下面是一个百度的无线网卡教程您可以看看。http://jingyan.baidu.com/article/495ba8411bea4138b30ede1c.html

求指导,做这样形状的莫斯树用什么莫斯最好

没看到你的图,不知道你的树是啥样,如果树的枝桠相互离得较近尽量用些生长缓慢的莫斯,千万不要用三角莫斯,长得太快,一旦它开始生长,简直几周就得一打理,否则就长成一大团,收拾不起呀。如果是杜鹃根或较大的沉木做树干,用不锈钢擦锅球或生化棉做树冠,那用三角、珊瑚、火焰、美凤、垂泪都可以。初次玩莫斯,大、小三角莫斯最好养。

这是摩斯密码吗?谁能告诉我是什么意思呢!?

是“我爱你”的意思。 最早的摩尔斯电码是一些表示数字的点和划。数字对应单词,需要查找一本代码表才能知道每个词对应的数。用一个电键可以敲击出点、划以及中间的停顿。虽然摩尔斯发明了电报,但他缺乏相关的专门技术。 1、点(·):1 2、划(-):111 3、字符内部的停顿(在点和划之间):0 4、字符之间的停顿:000 5、单词之间的停顿:0000000 扩展资料 作为一种实际上已经绝迹的电码,美式摩尔斯电码使用不太一样的点、划和独特地间隔来表示数字、字符和特殊符号。这种摩尔斯电码的设计主要是针对地面电报务员通过电报电线传输的,而非通过无线电波。 这种古老的、交错的电码是为了配合电报务员接听方式而设计的。不像现在可以从扬声器或者耳机中听到电码的音调,只能从这些最早期的电报机的一个机械发生设备听到嗒嗒的声音,甚至是从发送电键接听:这种电键在不发送信号时被设置为被动模式,负责发声。 这些报务员大多是为铁路或以后的西联电传等服务。像那时的许多年轻人一样,十几岁的爱迪生就是这样一名话务员。 参考资料来源:百度百科—摩尔斯电码

摩斯是什么?

尔斯电码(又译为摩斯密码,Morse code)是一种时通时断的信号代码,通过不同的排列顺序来表达不同的英文字母、数字和标点符号。它由美国人艾尔菲德·维尔发明,当时(1835年)他正在协助萨缪尔·摩尔斯进行摩尔斯电报机的发明。
摩尔斯电码是一种早期的数字化通信形式,但是它不同于现代只使用零和一两种状态的二进制代码,它的代码包括五种:
点(.)
划(-)
点和划之间的停顿
每个字符间短的停顿(在点和划之间)
每个词之间中等的停顿
以及句子之间长的停顿
最早的摩尔斯电码是一些表示数字的点和划。数字对应单词,需要查找一本代码表才能知道每个词对应的数。用一个电键可以敲击出点、划以及中间的停顿。
虽然摩尔斯发明了电报,但他缺乏相关的专门技术。他与艾尔菲德·维尔签定了一个协议,让他帮自己制造更加实用的设备。艾尔菲德·维尔构思了一个方案,通过点、划和中间的停顿,可以让每个字元和标点符号彼此**地发送出去。他们达成一致,同意把这种标识不同符号的方案放到摩尔斯的专利中。这就是现在我们所熟知的美式摩尔斯电码,它被用来传送了世界上第一条电报。
这种代码可以用一种音调平稳时断时续的无线电信号来传送,通常被称做连续波(Continuous Wave),缩写为CW。它可以是电报电线里的电子脉冲,也可以是一种机械的或视觉的信号(比如闪光)。
一般来说,任何一种能把书面字元用可变长度的信号表示的编码方式都可以称为摩尔斯电码。但现在这一术语只用来特指两种表示英语字母和符号的摩尔斯电码:美式摩尔斯电码被使用了在有线电报通信系统;今天还在使用的国际摩尔斯电码则只使用点和划(去掉了停顿)。
电报公司根据要发的信的长度收费。商业代码精心设计了五个字元组成一组的代码,做为一个单词发送。比如:BYOXO ("Are you trying to crawl out of it?"); LIOUY ("Why do you not answer my question?"),;AYYLU ("Not clearly coded, repeat more clearly.")。这些五个字元的简语可以用摩尔斯电码单独发送。在网路用辞中,我们也会说一些最常用的摩尔斯商用代码。现在仍然在业馀无线电中使用的有Q简语和Z简语:他们最初是为报务员之间交流通信质量、频率变更、电报编号等资讯服务的。
1838年1月8日,Alfred Vail展示了一种使用点和划的电**,这是摩尔斯电码前身。
作为一种资讯编码标准,摩尔斯电码拥有其他编码方案无法超越的长久的生命。摩尔斯电码在海事通讯中被作为国际标准一直使用到1999年。1997年,当法国海军停止使用摩尔斯电码时,发送的最後一条消息是:“所有人注意,这是我们在永远沉寂之前最後的一声呐喊”!
在今天,国际摩尔斯电码依然被使用著,虽然这几乎完全成为了业馀无线电爱好者的专利。直到2003年,国际电信联盟(ITU)管理著世界各地的摩尔斯电码熟练者取得业馀无线电执照的工作。在一些国家,业馀无线电的一些波段仍然只为发送摩尔斯电码信号而预留。
因为摩尔斯只依靠一个平稳的不变调的无线电信号,所以它的无线电通讯设备比起其它方式的更简单,并且它能在高杂讯、低信号的环境中使用。同时,它只需要很窄的带宽,并且还可以帮助两个母语不同、在话务通讯时会遇到巨大困难的操作者之间进行沟通。它也是QRP中最常使用的方式。
在美国,直到1991年,为了获得FCC颁发的允许使用高频波段的业馀无线电证书,必须通过每分钟五个单词(WPM)的摩尔斯码发送和接收测试。1999年以前,达到20WPM的熟练水平才能获得最高级别的业馀无线电证书(额外类);1999年12月13日,FCC把额外类的这项要求降低到13WPM。
2003年世界无线电通信大会(WRC03,ITU主办的频率分配专门会议,两年一度)做出决定,允许各国在业馀无线电执照管理中自己任选是否对摩尔斯电码进行要求。虽然在美国和加拿大还有书面上的要求,但在一些其他国家正准备彻底去除这个要求。
熟练的爱好者和军事报务员常常可以接收(抄报)40WPM以上速度的摩尔斯码。虽然传统发报电键仍有许多爱好者在使用,但半自动和全自动的电子电键在今天使用越来越广泛。电脑软体也经常被用来生成和**摩尔斯码电波信号。

莫斯水草怎么处理

你可以把莫斯剪成2,3厘米长的小段,均匀的平铺在杜鹃根上,然后用线缠绕着绑起来就可以了,线与线缠绕的间隔不要太大,0.5厘米左右就可以,等新的莫斯长出来可以用剪刀修剪几次,以后长出来会很整齐的

为什么数学那么重要?

.什么是数学   数学是研究现实世界空间形式和数量关系的一门科学.分为初等数学和高等数学.它在科学发展和现代生活生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具.   数学符号的引入   用一句话说,数学是无穷的科学.   2.数学的特点   严谨   数学语言亦对初学者而言感到困难.如何使这些字有着比日常用语更精确的意思.亦困恼着初学者,如开放和域等字在数学里有着特别的意思.数学术语亦包括如同胚及可积性等专有名词.但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性.数学家将此对语言及逻辑精确性的要求称为“严谨”   严谨是数学证明中很重要且基本的一部分.数学家希望他们的定理以系统化的推理依着公理被推论下去.这是为了避免错误的“定理”,依着不可靠的直观,而这情形在历史上曾出现过许多的例子.在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨.牛顿为了解决问题所做的定义到了十九世纪才重新以小心的分析及正式的证明来处理.今日,数学家们则持续地在争论电脑辅助证明的严谨度.当大量的计量难以被验证时,其证明亦很难说是有效地严谨.因为时代的差别、也抹去了不少知识、但是数学永不磨灭、永远流传智慧.   3.数学的应用   生活离不开数学,数学离不开生活,数学知识源于生活而高于生活,最终服务于生活。的确,学数学就是为了能在实际生活中应用。数学就是人们用来解决实际问题的,其实数学问题就产生与生活中。比如:上街买东西要用到加减乘除法,修建房屋用到做平面图等,这样的问题数不胜数,这些知识就是在生活中产生的。在数学教学中,我们要给学生实践活动的机会,引导学生自觉运用数学知识,用数学知识和方法分析与解决生活中的实际问题,使生活问题数学化,从而让学生更深刻地体会到数学的应用价值。   《课标》强调从学生已有的生活经验出发,让学生亲自经历将实际问题抽象成数学模型并进行解释与应用的过程。其实小学数学的教学内容绝大多数可以联系学生的生活实际,老师要找准每节课的内容与学生生活实际的“切合点”,调动学生学习数学的兴趣和参与学习的积极性。在教学中老师的责任不仅是诱发学生解决现实问题的**,更应让学生学会从众多条件、众多信息中选出需要的条件、信息,来解决现实生活中的问题,体验应用数学解决实际问题的成功与快乐。   一、 解决生活中的问题 ,做到学以致用   新课程标准指出,要让学生“认识到现实生活中蕴涵着大量的数学信息。数学在现实世界中有着广泛的应用,面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略……”。我们经常会遇到这种情况,一道题目讲了很久学生还弄不懂。如果老师将这道问题与生活实际联系起来,学生马上就能解决。因此作为教师应该思考,如何充分利用学生已有的生活经验,引导学生把数学知识运用到现实中去,以体会数学在生活中的应用价值。    二、 创设生活情景,激发学习兴趣   应用题源于生活,每道应用题总可以在生活中找到它的蓝本。因此,我们在应用题教学中如果把应用题与生活实际结合起来,就可以激发学生的学习兴趣。    三、 还原生活本质,培养学生思维   在注重数学生活化的同时,我们每一个教师一定要充分认识到数学教学的本质是发展学生的思维。生活化并不意味着数学知识的简单化,相反,还原数学以生活本质更有利于学生思维的发展。   我曾看到过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针重合几次?”那些学生都从手腕上摘下手表,开始拨表针;而这位教授给中国学生讲同一个问题时,学生们就会套用数学公式来进行计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子里的,不能灵活应用,很少想到在实际生活中学习、应用、掌握数学知识。   四、 实现生活需要,促进主体发展   从教育心理学来看,在生活中有五种不同层次的需要,最高需要便是自我实现的需要,一种决策的需要。我们在教学中一旦把应用题教学与生活联系起来,学生这种潜在的需要就更加强烈。   五。 数学的重要性   以名言为证:     万物皆数--毕达哥拉斯   在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么.——毕达哥拉斯   数学符号之美   数统治着宇宙.--毕达哥拉斯   几何无王者之道.——欧几里德   我决心放弃那个仅仅是抽象的几何.这就是说,不再去考虑那些仅仅是用来练思想的问题.我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何.——笛卡儿(Rene Descartes 1596-1650)   数学是人类知识活动留下来最具威力的知识工具,是一些现象的根源.数学是不变的,是客观存在的,上帝必以数学法则建造宇宙.——笛卡儿   虚数是奇妙的人类棈神寄托,它好像是存在与不存在之间的一种两栖动物.——莱布尼茨(Gottfried Wilhelm von Leibniz 1646-1716)   不发生作用的东西是不会存在的.——莱布尼茨   考虑了很少的那几样东西之后,整个的事情就归结为纯几何,这是物理和力学的一个目标.——莱布尼茨   虽然不允许我们看透自然界本质的秘密,从而认识现象的真实原因,但仍可能发生这样的情形:一定的虚构假设足以解释许多现象.——欧拉(Leonhard Euler 1707-1783)   因为宇宙的结构是最完善的而且是最明智的上帝的创造,因此,如果在宇宙里没有某种极大的或极小的法则,那就根本不会发生任何事情.——欧拉   数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深. 数学是科学之王.——高斯   数学是自然科学之首,而数论是数学中的皇后.——高斯   这就是结构好的语言的好处,它简化的记法常常是深奥理论的源泉.——拉普拉斯(Pierre Simon Laplace 1749-1827)   在数学这门科学里,我们发现真理的主要工具是归纳和类比.——拉普拉斯   读读欧拉,读读欧拉,他是我们大家的老师.——拉普拉斯   一个国家只有数学蓬勃发展,才能表现她的国力强大.——拉普拉斯   认识一位巨人的研究方法,对於科学的进步并不比发现本身更少用处.科学研究的方法经常是极富兴趣的部分.——拉普拉斯   如果认为只有在几何证明里或者在感觉的证据里才有必然,那会是一个严重的错误.——柯西(Augustin Louis Cauchy 1789-1857)   写满数学公式的纸   给我五个系数,我将画出一头大象;给我第六个系数,大象将会摇动尾巴.——柯西   人必须确信,如果他是在给科学添加许多新的术语而让读者接着研究那摆在他们面前的奇妙难尽的东西,已经使科学获得了巨大的进展.——柯西   几何看来有时候要领先于分析,但事实上,几何的先行于分析,只不过像一个仆人走在主人的前面一样,是为主人开路的.——西尔维斯特(James Joseph Sylvester 1814-1897)   也许我可以并非不适当地要求获得数学上亚当这一称号,因为我相信数学理性创造物由我命名(已经流行通用)比起同时代其他数学家加在一起还要多.——西尔维斯特   一个没有几分诗人才能的数学家决不会成为一个完全的数学家.——魏尔斯特拉斯(Karl Weierstrass 1815-1897)   数学的本质在于它的自由.——康扥尔   数学的领域中, 提出问题的艺术比解答问题的艺术更为重要.——康托尔   只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示**发展的终止或衰亡. ——希尔伯特   音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切.——克莱因   没有那门学科能比数学更为清晰的阐明自然界的和谐性.---Carus,Paul   问题是数学的心脏——P.R.哈尔莫斯   哪里有数,哪里就有美!——普洛克拉斯   逻辑是不可战胜的,因为要反对逻辑还得要使用逻辑.——布特鲁   数学分系统自然界本身同样的广阔————傅立叶   逻辑可以等待,因为它是永恒————亥维赛   一门科学,只有当它成功地运用数学时,才能达到真正完善的地步. ——马克思   数学是无穷的科学.——赫尔曼·外尔   历史使人聪明,诗歌使人机智,数学使人精细.——培根   一个国家的科学水平可以用它消耗的数学来度量.——拉奥   没有哪门学科能比数学更为清晰地阐明自然界的和谐性.——卡罗斯   数学是规律和理论的裁判和主宰者.——本杰明   六.数学与文化   数学的文化价值 一、数学是哲学思考的重要基础  数学在科学、文化中的地位,也使得它成为哲学思考的重要基础。历史上哲学领域内许多重要论争,常常牵涉到有关对数学的一些根本问题的认识。我们思考这些问题,有助于正确认识数学,正确理解哲学中有关的争论。  (一)数学——-根源于实践  数学的外在表现,或多或少人的智力活动相联系。因此在数学和实践的关系上,历来有人主张数学是“人的精神的自由创造”,否定数学来源于实践其实,数学的一切发展都不同程度地归结为实际的需要。从我国殷代的甲骨文中,就可以看到那时我们的祖先已经会使用十进制计数方法他们为适应农业的需要,将“十干”和“十二支”配成六十甲子,用以记年、月、日,几千年的历史说明这种日历的计算方法是有效的。同样,由于商业和债务的计算,古代的巴比伦人己经有了乘法表、倒数表,并积累了许多属于初等代数范畴的资料。在埃及,由于尼罗河泛滥后重新测量土地的需要,积累了大量计算面积的几何知识。后来随着社会生产的发展,特别是为适应农业耕种与航海需要而产生的天文测量,逐渐形成了初等数学,包括当今我们在中学里学习到的大部分数学知识。再后来由于蒸汽机等机械的发明而引起的工业**,需要对运动特别是变速运动作更精细的研究,以及大量力学问题出现,促使微积分在长期的酝酿后应运而生。20世纪以来近代科学技术的飞速发展,使数学进入一个空前繁荣时期。在这个时期数学出现了许多新的分支:计算数学,信息论,控制论,分形几何等等。总之,实践的需要是数学发展的最根本的推动力。  数学的抽象性往往被人所误解。有些人认为数学的公理、公设、定理仅仅是数学家头脑思维的产物。数学家靠一张纸、一支笔工作,和实际没有什么联系。  其实,即使就最早以公理化体系面世的欧的几里德几何而言,实际事物的几何直观和实践中人们发展的现象,尽管不合乎数学家公理化体系的各式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他伯头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会成为无源之水,无本之木。  其实,即使就最早以公理化体系面世的欧几里德几何而言,实际事物的几何直观和实践中人们发现的现象,尽管不合乎数学家公理化体系的程式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他的头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受过严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会变成无源之水,无本之木。  但是,数学理性思维的特点,使它不会满足于仅研究现实的数量关系和空间形式,它还努力探索一切可能的数量关系和空间形式。在古希腊时期,数学家就超越了在现实有限尺度精度内度量线段的方法,觉察到了无公度量线段的存在,即无理数的存在。这其实是数学中最困难的概念之一—连续性、无限性的问题。直到两千年以后,同样的问题导致极限理论的深入研究,大大地推动了数学的发展。试想今天如果还没有实数的概念,我们将面临怎样的处境。这时人们无法度量正方形对角线的长度,也不会解一元二次方程:至于极限理论与微积分学更不可能建立即使人们可以像牛顿那样应用微积分,但是在判断结论的真实性时会感到无所适从。在这种状况下,科学技术还能走多远呢?又如在欧几里德几何产生时,人们就对其中一个公设的**性产生怀疑。到19世纪上半叶,数学家改变这个公设,得到了另一种可能的几何一一非欧几里德几何。这种几何的创立者表现了极大的勇气,因为这种几何得出的结论从“常理”来说是非常“荒唐”的。例如“三角形的面积不会超过某一个正数”。现实世界似乎没有这种几何的容身之地。但是过了近一百年,在物理学家爱因斯坦发现的相对论中,非欧几里德几何却是最合适的几何。再如,20世纪30年代哥德尔得到了数学结论不可判别性的结果,其中的某些概念非常抽象,近几十年却在算法语言的分析中找到了应用。实际上,许多数学在一些领域或一些问题中的应用,一旦实践推动了数学,数学本身就会不可避免地获得了一种动力,使之有可能超出直接应用的界限。而数学的这种发展,最终也会回到实践中去。  总之,我们应该大力提倡研究和当前实际应用有直接联系的数学课题,特别是现实经济建设中的数学问题。但是我们也应该在纯粹科学和应用科学之间建立有机的联系,建立抽象的共性和丰富多彩的个性之间的平衡,以此来推动整个科学协调地发展。  (二)数学—充满了辩证法由于数学严密性的特点,很少有人怀疑数学结论的正确性。相反,数学的结论往往成为真理的一种典范。例如人们常常用“像一加一等于二那么确定”来表示结论不容置疑。在我们的中小学的教学中,数学更是只准模仿、演练、背诵。数学真的是万古不变的绝对真理吗?  事实上,数学结论的真理性是相对的即使像1+1=2这样简单的公式,也有它不成立的地方。例如在布尔代数中,1+1=0!而布尔代数在电子线路中有广泛的应用。欧几里德几何在我们的日常生活中总是正确的,但在研究天体某些问题或速度很快的粒子运动时非欧几何却是适宜的。数学其实是非常多样化的,它的研究范围也随着新问题的出现而不断扩大。如同一切科学一样,数学家们如果死守着前辈的思想、方法、结论不放,数学科学就不会进步。把数学的严密性和公理化体系看作一种“教条”是错误的,更不能像封建时代的文人对待孔夫子说的话:“真理”已经包含在圣人说过的话里,后人只能对其作诠释。数学发展的历史可以证明,正是数学家特别是年轻数学家的创新精神,敢于向守旧的思想挑战,数学的面貌才得以不断地更新,数学才成长为今天这样一门蓬勃发展、富有朝气的学科。  数学的公理化体系从来也不是不容怀疑、不容变化的“绝对真理”欧几里德的几何体系是最早出现的数学公理化体系,但从一开始就有人怀疑其中的第五公设不是**的,即该公设可以从公理体系的其他部分推出。两千多年来人们一直在寻找答案,终于在19世纪由此发现了非欧几何。虽然人们长时期受到欧几里德几何的束缚,但是最终人们还是接受了不同的几何公理体系。如果历史上某些数学家多一点敢于向旧体系挑战的革新精神,非欧几何也许还可能早几百年出现数学公理化体系反映了内部逻辑严密性的要求。在一个学科领域内,当有关的知识积累到一定程度后,理论就会要求把一堆看来散乱的结果以某种体系的形式表现出来。这就需要对己有的事实再认识、再审视、再思索,创造新概念、新方法,尽可能地使理论能包括最一般、最新发现的规律。这实在是一个艰苦的理论创新过程。数学公理化也一样,它表示数学理论已经发展到了一个成熟的阶段,但并不是认识一劳永逸的终结。现有的认识可能被今后更深刻的认识所代替,现有的公理也可能被今后更一般化、包含更多事实的公理体系所代替。数学就在不断地更新过程中得到发展。  有种看法以为,应用数学就是把熟诵的数学结论套到实际问题上去,以为中小学的教学就是教给学生这些万古不变的教条。其实数学的应用极充满挑战性,一方面不但需要深切地认识实际问题本身,另一方面要求掌握相关数学知识的真谛,更重要的是要求能创造性地把两者结合起来。  就数学的内容来说,数学充满了辩证法。在初等数学发展时期,占统治地位的是形而上学。在该时期的数学家或其他科学家看来,世界由僵硬的、不变的东西组成。与此相适应,那时数学研究的对象是常量,即不变的量。笛卡尔的变数是数学中的转折点,他把初等数学中完全不同的两个领域一一几何和代数结合起来,建立了解析几何这个框架具备了表现运动和变化的特性,辩证法因此进入了数学。在此后不久产生的微积分抛弃了把初等数学的结论作为永恒真理的观点,常常做出相反的判断,提出一些在初等数学的代表人物看来完全不可理解的命题。数学走到了这样一个领域,在那里即使很简单的关系,都采取了完全辩证的形式,迫使数学家们不自觉又不自愿地转变为辩证数学家。在数学研究的对象中,充满了矛盾的对立面:曲线和直线,无限和有限,微分和积分,偶然和必然,无穷大和无穷小,多项式和无穷级数,正因为如此,马克思**经典作家在有关辩证法的论述中经常提到数学。我们学一点数学,一定会对体会辩证法有所帮助。 7.数学占考试的分值 中考(江苏): 语文,满分150数学,满分150英语,满分130物理,满分100化学,满分100历史,满分50**:满分50体育,满分40 高考: 语文 150 数学 150英语 150 文综(理综)300总分 750 由此可见,数学无论是在生活与学习中都有重大的作用。 1.参考文献: 百科词条“数学” http://baike.baidu.com/link?url=8EuGUWlrUe9VBteSuFiXcT87SWYrwIV7B_jum5advHZu2EiNS0CtPjcnopHmfEAB 2.数学成绩计入文化考试总分 http://news****xun***m/jingdezhentaoci-1282-6406456.shtml 3.百度百科“数学与文化”词条 http://baike.baidu.com/link?url=pMPMrsPNHIIqNCNdzCy-zwcKT-ccIxgIQ6itzYTYh_ZirDhpZnUYQ_h0ewDB7m1ke8F589QyTzQ1Yvu_yjfweK 请广大读者阅读参考

本文由宠物迷 百科常识栏目发布,非常欢迎各位朋友分享到个人朋友圈,但转载请说明文章出处““莫斯”是什么意思?武汉话吗?